
Controlling Complex Systems Dynamics without Prior Model

Jérémy Boes, François Gatto, Pierre Glize, Frédéric Migeon
Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier, Toulouse, France

{boes, gatto, glize, migeon}@irit.fr

Keywords: Complex Systems control ; Multi-Agent Systems ; Self-Organization

Abstract: Controlling complex systems imposes to deal with high dynamics, non-linearity and multiple interdependen-
cies. To handle these difficulties we can either build analytic models of the process to control, or enable the
controller to learn how the process behaves. Adaptive Multi-Agent Systems (AMAS) are able to learn and
adapt themselves to their environment thanks to the cooperative self-organization of their agents. A change in
the organization of the agents results in a change of the emergent function. Thus we assume that AMAS are
a good alternative for complex systems control, reuniting learning, adaptivity, robustness and genericity. The
problem of control leads to a specific architecture presented in this paper.

1 INTRODUCTION

It is well known that the more complex a system
is, the more complex its controler has to be (Ashby,
1956). Over the years, the number systems we intend
to control, as long as their complexity, has been grow-
ing up. The need for controllers able to deal with this
complexity is becoming prominent.

Whether it is car engines, bioprocesses or energy
management systems or any other example, their as-
sociated controller have to deal with the same issues.
Firstly, the controller needs to deal with the complex-
ity of the controlled system. This requires the method
it uses to learn and adjust its control in order to scale
to the controlled system complexity. Secondly, ob-
servable and controllable points of complex systems
can vary over time. Some points may be added when
the system is expending as other be deleted due to in-
ternal sensor failures for example. Therefore the con-
troller should be able to modify, preferably at runtime,
its inputs and outputs. Finally, one of the primary
drawbacks of current controllers is the long instan-
tiation work they require to make them fit the actual
process they will control. This is mainly due to the
models they use. Genericity and adaptivity are needed
in order to avoid the use of a model. The controller we
present in this paper intends to tackle those issues.

Humans fulfill the task of control in their everyday
life. Children learning to drive a bike is a good exam-
ple. They have the ability to move their legs in order
to walk and run. Also they do not have any knowl-
edge about the mechanism inside the bike nor about

the laws of physics. While they are experiencing their
first ride on a bike, their most used skill is the ability
to adapt and coordinate their movement in a new sit-
uation. They try new movements and will learn from
every one of them. Following a practice period, chil-
dren usually end up acquiring the ability to control the
bike, but still did not get in touch with any theoretical
concept and did not build any analytical model of the
bike. This analogy tries to explain the point of view
we adopted.

In section 2 various control methods and ap-
proaches that have been experimented and used over
the years are briefly presented. We follow with an in-
troduction to the Adaptive Multi-Agent Systems the-
ory. In section 3 the design of our controller is de-
scribed before going deeper in the agents behavior be-
fore section 4 concludes with our perspectives.

2 RELATED WORKS

In this section the main approaches of control are
presented before a brief introduction to the Adaptive
Multi-Agent Systems theory.

2.1 Complex Systems Control

Controlling systems is a generic problem that can be
expressed as finding which modifications are needed
to be applied on the inputs in order to obtain the de-
sired effects on the ouputs. The most well-known are
presented in the next paragraphs.



PID - The widely used Proportional-Integral-
Derivative (PID) controller computes three terms re-
lated to the error between the current and the desired
state of the process, from which it deduces the next
action to apply (Astrom and Hagglund, 1995). PID
controllers are not efficient with non-linear systems
and can only handle one input, which is a severe draw-
back for complex systems control.

Adaptive Control - Model-based approaches like
Model Predictive Control (MPC) (Nikolaou, 2001)
use a model able to forecast the behavior of the pro-
cess in order to find the optimal control scheme.
These approaches handle several inputs but are lim-
ited by the mathematical models they use. The Dual
Control Theory uses two types of commands : the
actual controls that drive the process to the desired
state, and probes to observe the process reactions and
refine the controller’s knowledge (Feldbaum, 1961).
The concept of this approach is interestin but a heavy
instantiation work is still required.

Intelligent Control - Intelligent control regroups
approaches that use Artificial Intelligence methods
to enhance existing controllers. Among these meth-
ods we can find neural networks (Hagan et al.,
2002), fuzzy logic (Lee, 1990), expert systems (Sten-
gel, 1991) and bayesian controllers (Colosimo and
Del Castillo, 2007). These methods can be easily
combined one with another.

2.2 Adaptive Multi-Agent Systems

The Adaptive Multi-Agent Systems (AMAS) the-
ory is a basis for the design of multi-agent systems
where cooperation is the engine for self-organization
(Georgé et al., 2011). As cooperative entities, AMAS
agents try to reach their own goals as well as they try
to help other agents to achieve their goals. Moreover,
an agent will modify its behavior if it thinks that its
actions are useless or detrimental to its environment.
Such situations are called Non-Cooperative Situations
(NCS). Some behavioral rules, specific to NCS’s, help
agents to solve or avoid these situations. By solving
NCS’s, in regard to their own local goals, cooperative
agents collectively find a solution to the global prob-
lem. Therefore one can consider the behavior of an
AMAS as emergent.

Thanks to its adaptiveness, an AMAS-based con-
troller should not rely on a specific model of the pro-
cess thus it does not need a heavy instantiation work.
Besides, it should be able to deal with a changing
number of inputs and outputs.

3 CONTROLLER OVERVIEW

Controlling a system means finding the most ad-
equate action to apply on its inputs in order to ob-
tain the desired effect on its outputs. Here we present
the required basic abilities of a complex system con-
troller, and what are the agents that enable them.
Then, we explain with a simple example how it is pos-
sible to control a process with local behavioral rules.

3.1 Nominal Behavior

The next paragraphs describe how our multi-agent
system, called Self-Organizing Controller (SOC),
works when it is already adapted to the controlled sys-
tem. The mechanisms that lead to this adaptation will
be explained further.

3.1.1 Observing the Process

If we intend to control a system, it is obvious that we
need to be able to observe it. A specific agent type is
in charge of perception, called Variable Agent (each
input and output of the process). These agents per-
ceive their value from the process and send it to agents
who need this information. Also, Variable Agents can
embed noise reduction algorithms if this problem is
not handled by a third party system.

3.1.2 Representing Objectives and Constraints

The controller needs to know what is the desired state
of the process. This state is represented by a set of
Constraint Agents and possibly by additional Variable
Agents.

There are three types of Constraint Agents :
Threshold, Setpoint and Optimization. A Threshold
Constraint Agent expresses the will to keep a variable
either below or above a threshold specified by a Vari-
able Agent. In a similar way, a Setpoint Constraint
Agent expresses the will to set a process variable to a
particular value. Finally, an Optimization Constraint
Agent represents the will to minimize or maximize a
process variable.

Each Constraint Agent computes a critical level
that varies from 0 (the agent is satisfied) to 100 (the
agent is far from satisfied). The critical level depends
on the value of the variable on which the constraint is
applied and can be parametrized by a second Variable
(in the case of a threshold or a setpoint constraint).

It is clear that decreasing the critical levels means
solving the constraints, and the only way to do so is
to perform the adequate actions on the process inputs.
Finding these actions implies to be able to analyze the
current sate of the environment.



3.1.3 Analyzing the State of the Environment

The SOC environment is the process to control as well
as the user-defined setpoints and thresholds. Thanks
to Variable Agents and Constraints Agents, the multi-
agent system has a representation of its environment.
Before it can perform control, it must be able to ex-
tract relevant information from this representation.
This is the role of agents called Context Agents.

A Context Agent memorizes the effects, on ev-
ery critical level, of an action applied to one partic-
ular input of the process. It also memorizes the state
of the environment when the action was applied. To
represent this state the Context Agent maintains a set
of validity ranges, containing one range per Variable
Agent. The memorized effects on critical levels form
its forecasts. In other words, a Context Agent rep-
resents the information that if every variable value is
inside its validity range, and if this action is applied,
then the effects on every critical level will be similar
to these forecasts.

A Context Agent is said valid when the environ-
ment is in a state that matches its validity ranges.
When this occurs, it sends a notification with its ac-
tion and forecasts to the appropriate Controller Agent,
which will be presented in the next part.

3.1.4 Selecting the Adequate Action

Each controlled input of the process is associated with
a Controller Agent. The role of a Controller Agent is
to apply the most adequate action in order to reduce
the critical levels. It will base its choice on the infor-
mation it receives from Context Agents, picking the
action that will provoke the biggest descrease of the
critical levels. When an action is picked, the Con-
troller Agent notifies every Context Agents who pro-
posed it.

Figure 1 shows the global architecture of the sys-
tem. There are several cases where the Controller
Agent is unable to make a good decision, because
of incomplete or incorrect information from Context
Agents. These cases are Non-Cooperative Situations
(NCS). When a NCS occurs, the cooperative behav-
ior of involved agents is triggered in order to solve it.
This will be explained in 3.2.

3.2 Non-Cooperative Situations

This section presents the main NCS’s our agents face
and how they solve it, leading the system to have an
accurate representation of the process to control.

No Adequate Action in Suggestions - This NCS
occurs when the suggestions list of a Controller

Agent contains only forecasts of increasing Con-
straint Agents critical levels. There are two cases :
either all the possible actions are already suggested or
some actions are not proposed. In the first case, the
only choice left is to accept the suggestion with the
less bad forecasts. In the second case, a new action is
applied, and a new Context is created with this action.

Empty Suggestions List - This NCS happens when
a Controller Agent has to apply an action, but finds
its suggestion list empty. It will be unable to find an
adequate action with certainty, but it can make some
hypothesis to try one. If the last action it applied had
reduced the maximum of the Constraint Agents crit-
ical levels, the same action is reproduced. If not, the
opposite action is applied. A new Context Agent is
created, with the applied action. After its creation, a
Context Agent will extend its validity ranges as long
as its action is applied.

Wrong Forecast - This NCS occurs when a Con-
text Agent is selected, checks its forecasts and notices
that they are not correct. If the forecasts are wrong
(i.e. a critical level evolves in the opposite direction
of the forecast), the Context Agent considers that it
should not have been valid when the action was sug-
gested : its validity ranges are reduced. A Context
Agent dies if one of its ranges is reduced to an am-
plitude of zero. If the forecasts are only erroneous
(i.e all the critical levels evolve in the forecasted di-
rection, but not with the forecasted amplitude), the
Context Agent considers that its validity was relevant,
thus does not modify its validity ranges, but adjusts its
forecasts to match its observation.

4 CONCLUSION

In this paper, we presented a an Adaptive Multi-
Agent System, called SOC, which controls an unde-
fined complex system, basing its behavior on self-
organizing agents, without a complete understanding
of the controlled process. All the controller needs to
know is how the process behaves. In other words our
controller is of black-box type : the multi-agent sys-
tem only perceives the process inputs and outputs, but
not its internal mechanisms. The basic principle of
our controller is the following : the multi-agent sys-
tem memorizes the state of the process inputs/outputs
when an action is applied and observes the reactions
of the process. It will use this information to decide
whether this action was good or not in regard of the
user-defined desired process state. This means that
the quality of the control improves over time : at the
begining the controller knows nothing about the pro-
cess, but it perpetually learns from its actions and



Figure 1: SOC Topology

quickly manages to control the process. Since the
learning is parallel to the control, SOC continuously
self-adapts to the process.

SOC does not need any prerequisite knowledge
other than the intentions of the user (i.e. some critical-
ity functions). It is also able to satisfy multi-criteria
constraints on multiple inputs and outputs. Each time
it performs an action, it learns from it, improving its
control and adapting itself to the evolution of the pro-
cess. Moreover, the independence between Controller
Agents gives SOC a certain modularity. Each Con-
troller Agent (and its related Context Agents) is a
stand-alone MAS that can be plugged on a process
input. Regardless on what is controlling the other in-
puts, it will be able to synchronize its actions to per-
form a correct control without any knowledge about
the rest of the controlling system.

We hope to make SOC generic enough to be eas-
ily applied to all kind of systems. It has already been
applied to the control of the temperature of a biopro-
cess (Videau et al., 2011) and is currently being ap-
plied in the contexts of ambiant systems (Guivarch
et al., 2012), intelligent building energy management
and heat engine control.

REFERENCES

Ashby, W. R. (1956). An Introduction to Cybernetics. Chap-
man & Hall, London, UK.

Astrom, K. J. and Hagglund, T. (1995). PID Controllers:
Theory, Design, and Tuning. Instrument Society of
America, Research Triangle Park, NC, second edition.

Colosimo, B. M. and Del Castillo, E., editors (2007).
Bayesian Process Monitoring, Control and Optimiza-
tion. Taylor and Francis, Hoboken, NJ.

Feldbaum, A. A. (1960-1961). Dual control theory, I-IV.
Automation Remote Control, 21-22.

Georgé, J.-P., Gleizes, M.-P., and Camps, V. (2011). Co-
operation. In Di Marzo Serugendo, G., editor,
Self-organising Software, Natural Computing Series,
pages 7–32. Springer Berlin Heidelberg.

Guivarch, V., Camps, V., and Pninou, A. (2012). Context
awareness and adaptation in ambient systems by an
adaptive multi-agent approach. In International Joint
Conference on Ambient Intelligence, Italy.

Hagan, M. T., Demuth, H. B., and De Jesus, O. (2002). An
introduction to the use of neural networks in control
systems. International Journal of Robust and Nonlin-
ear Control, 12(11):959–985.

Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy
logic controller. IEEE Transactions on Systems, Man
and Cybernetics, 20(2):404–418.

Nikolaou, M. (2001). Model predictive controllers: A criti-
cal synthesis of theory and industrial needs. Advances
in Chemical Engineering, 26:131–204.

Stengel, R. F. (1991). Intelligent failure-tolerant control.
IEEE Control Systems, 11(4):14–23.

Videau, S., Bernon, C., Glize, P., and Uribelarrea, J.-L.
(2011). Controlling Bioprocesses using Cooperative
Self-organizing Agents. In Demazeau, Y., editor,
PAAMS, volume 88 of Advances in Intelligent and Soft
Computing, pages 141–150. Springer-Verlag.


